Разбираемся, как человечество пытается воспроизвести работу мозга с помощью математики, и делаем прогнозы, куда приведёт развитие искусственного интеллекта.
Что представляет собой искусственный интеллект
Искусственный интеллект (ИИ) — это не инструмент или программа, а отдельное направление компьютерных наук. Специалисты по ИИ разрабатывают системы, которые анализируют информацию и решают задачи аналогично тому, как это делает человек.ИИ использует алгоритмы, которые позволяют компьютеру обрабатывать большие объёмы данных и находить в них закономерности. На основе этих закономерностей он может делать выводы, предсказывать события или принимать решения.
Представим, что наш мозг — это огромная команда сотрудников, которые вместе работают над разными проектами. Искусственный интеллект — это попытка создать такую же команду с помощью компьютеров и программ. Простой пример ИИ — это шахматный компьютер, который может анализировать ситуацию на доске и делать ходы, основанные на определённых правилах и тактиках. Он имитирует процесс мышления человека при игре в шахматы, но делает это с помощью алгоритмов и вычислений.
Иногда ИИ путают с нейросетью, но это справедливо только отчасти. Нейросети — это один из подходов к созданию ИИ, который вдохновлён системой нейронов в мозге. Вместо того чтобы писать сложные алгоритмы для решения задач, нейросети обучаются на основе большого количества данных и находят в них закономерности.
Чтобы работать с нейросетями, не нужно быть учёным. Например, можно освоить профессию инженера машинного обучения. Он работает с данными и создаёт на их основе алгоритмы машинного обучения, которые помогают решать прикладные задачи.
История возникновения ИИ
Несмотря на медиашум вокруг Chat GPT и генеративных нейросетей, искусственный интеллект — не новая область исследований.
1950-е: тест Тьюринга и конференция в Дартмуте
Математик Алан Тьюринг предложил идею мыслящей машины. Он считал, что машины, как и люди, могут использовать доступную информацию для принятия решений. Чтобы это проверить, он разработал тест. Человек с помощью текстового интерфейса задавал вопросы одновременно другому человеку и машине. Если отличить их ответы не получалось, считалось, что машина прошла тест и обладает искусственным интеллектом.
Проверить концепцию Тьюринга оказалось сложно из-за ограниченной функциональности компьютеров и дорогой техники. Такие исследования были доступны только крупным технологическим компаниям и престижным университетам.
В 1956 году в Дартмутском колледже прошла конференция о «механизации интеллекта», на которой Джон Маккарти, когнитивист и специалист по информатике, предложил термин «искусственный интеллект». Этот момент можно считать началом истории ИИ.
1960-е: Золотые годы искусственного интеллекта
Компьютеры становились доступнее, дешевле, быстрее и могли хранить больше информации. Алгоритмы машинного обучения также совершенствовались:
● Начали разрабатывать первые экспертные системы — компьютерные программы, которые моделируют знания человека в определенной области. Например, в химии или физике. Эти системы обычно состояли из двух компонентов: базы знаний и механизма вывода. База знаний содержала информацию о предметной области, а механизм вывода работал как диалоговое окно. Например система DENDRAL помогала определять структуру молекул неизвестных органических соединений.
● Появились персептроны — первые нейронные сети, которые смогли обучаться на данных и решать простые задачи классификации. Например, распознавать рукописные цифры.
● Разработан язык программирования LISP, который стал основным языком для исследований в области ИИ.
● В середине 1960-х Джозеф Вайценбаум создал ELIZA — первого чат-бота, который имитировал работу психотерапевта и мог общаться с человеком на естественном языке.
1970–80-е: Спад и возрождение ИИ
У государства были завышенные ожидания от учёных в вопросах развития искусственного интеллекта. Когда они не оправдались, финансирование исследований в области ИИ сократилось. Возобновить разработки помогла конкуренция США и Великобритании с Японией. К тому времени там уже построили WABOT-1 — интеллектуального человекоподобного робота.
Вот некоторые разработки западных учёных того времени:
● Более продвинутые экспертные системы. Например, MYCIN могла диагностировать менингит и рассчитывать дозировку антибиотика для его лечения.
● Алгоритмы обратного распространения ошибки, которые позволили обучать нейронные сети гораздо эффективнее.
1990–2000-е: машины стали обыгрывать людей
Благодаря увеличению вычислительной мощности стали возможными более сложные и мощные алгоритмы машинного обучения:
● В 1997 году Deep Blue от IBM (компьютерная система для игры в шахматы) победила гроссмейстера Гарри Каспарова ― действующего чемпиона мира по шахматам.
● Внедрено программное обеспечение для распознавания речи Dragon Systems в Windows.
● В конце 1990-х годов разработали Kismet — искусственного гуманоида, который мог распознавать и демонстрировать эмоции.
● В 2002 году искусственный интеллект появился в домах в виде Roomba — первого робота-пылесоса.
● В 2004 году два робота-геолога NASA — Opportunity и Spirit — исследовали поверхность Марса без помощи человека.
● В 2009 году Google начала разрабатывать технологию самоуправляемых автомобилей. Позже они прошли тест на самостоятельное вождение.
2010-е — наше время: мысли о сингулярности
В XXI веке ИИ стал развиваться стремительно, и вот почему:
1. Появился объём данных из социальных сетей и других медиа, на котором ИИ может полноценно учиться.
2. Мощные компьютеры позволили обрабатывать и анализировать огромные объёмы данных с большей скоростью и эффективностью.
3. Появились новые технологии и подходы, которые поддерживают развитие искусственного интеллекта. Машинное обучение, нейронные сети, глубокое обучение стали доступными и дали новые возможности для создания более умных и адаптивных систем.
4 декабря 2012 года на конференции Neural Information Processing Systems (NIPS) группа исследователей представила подробную информацию о своих свёрточных нейронных сетях, которые помогли им выиграть в конкурсе классификации ImageNet. Классификация изображения — это процесс определения категории или класса, к которому оно относится. Например, мы видим кота и понимаем: это рыжее пушистое существо — точно кот. Нейросеть определяет кота на изображении, анализируя пиксели и выделяя характерные признаки. Модель, которую представили на конференции, содержала нейросеть со множеством слоёв. Такая архитектура помогла распознавать изображения с точностью 85% — всего на 10% слабее человека.
Спустя два года классификация в конкурсе ImageNet с помощью свёрточных нейросетей обогнала по точности человека и достигла 96%. Технологию искуственного интеллекта начали применять не только для распознавания изображений, но и для аналитики в финансах, распознавания голоса в смартфонах, в беспилотных автомобилях и компьютерных играх.
За последние 10 лет разработано больше, чем за всю историю ИИ. Вот некоторые достижения:
● В 2011 году Watson — система вопросов и ответов IBM на естественном языке — выиграла викторину Jeopardy!, победив двух бывших чемпионов. В том же году Юджин Густман — говорящий компьютерный чат-бот — обманул судей во время теста Тьюринга, заставив их принять его за человека.
● В 2011 году Apple выпустила Siri, виртуального помощника, который с помощью технологии NLP (обработки естественного языка) делает выводы, изучает, отвечает и предлагает что-либо своему пользователю-человеку.
● В 2016 году появилась София — первый робот, который может менять выражение лица, видеть (с помощью распознавания изображений) и разговаривать с помощью искусственного интеллекта.
● В 2017 году Facebook разработал двух чат-ботов для переговоров друг с другом. В процессе переговоров они обучались и совершенствовали тактики. В итоге эти чат-боты изобрели свой собственный язык для общения.
● 2023 — год прогресса для генеративных сетей (GAN), которые создают реалистичные изображения и видео, и больших языковых моделей (LLM), например ChatGPT.